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A method is presented for calculating fluid flow in two dimensions using a full particle-in- 
cell representation on an adaptively zoned grid. The method has many interesting properties, 
among them an almost total absence of numerical dissipation and the ability to represent 
large variations in the data. The method is described using a standard formalism and its 
properties are illustrated by supersonic flow over a step and the interaction of a shock with a 
thin foil. 

INTRODUCTION 

The particle-in-cell (PIC) representation has been used successfully to model 
many aspects of highly distorted flow in two dimensions. [l-3]. In PIC, the fluid is 
represented by Lagrangean mass points, called particles, moving through a com- 
putation grid. Other properties of the fluid are assigned temporarily to the particles 
in proportion to their mass to convect information from one cell of the grid to 
another. Because of the Lagrangean description of the mass distribution, PIC codes 
are notably successful in tracking contact discontinuities and in modeling highly 
distorted flow. This capability has been exploited in a wide variety of applications, 
including the modeling of hypervelocity impact, free surface motion, multimaterial 
and chemically reacting flow, and magnetohydrodynamics [3]. 

Here, our goal is to make PIC even more useful by extending it to an adaptively 
zoned grid [4]. With such a grid, which can resolve fine detail in a large system. we 
can use the information carried by the particles more effectively in the solution of 
the dynamical equations, especially when large changes in scale occur or singular 
boundary layers form. 

In extending PIC, we must ask first with which PIC formulation we should 
begin. Since the development of the original PIC, many attempts have been made 
to increase the accuracy of PIC [S-7]. As is well known, the accuracy of PIC is 
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compromised by a large computational diffusion caused by transferring the mom-en- 
turn from the grid to the particles and back in modeling convection through he 
grid. 

In increasing the accuracy of PIC, researchers have foIlowed one of two 
approaches. In work typical of the first approach, Nishiguchi and Babe [5] have 
developed more accurate momentum convection algorithms for PfC. As in the 
original PTC. they transfer momentum information to the particles from the grid 
before the particles are displaced, and then back afterwards. To increase accurac;;. 
they have restricted the transfers from the grid to the particles and back to changes 
in momentum due to particle displacements, rather than to the momentum itselI 
Thus, the diffusion introduced varies as the particle displacement, rather than as the 
number of cycles in the calculation. 

The second approach is suggested by the use of PIC in plasma simulation [a] 
and has been followed by a number of researchers 16, 71. In plasma simuhttron, 
each numerical particle represents a large number of physical particles in a plasma. 
En addition to position and mass, each numerical particle is assigned a charge a::d a 
veiocity from which a distribution function can be constructed. The grid carries no 
permanent information and acts only as a computationa! convenience in organizing 
the particle data while calculating the interaction between particies. 

The success of PIC in plasma simulation suggests assigning more information to 
each particle in fluid flow calculations for greater accuracy. McCrory eF ui. [6: and 
LeBoeuf er a/. [I7], for example, use full particle models in which they assign imer- 
nal energy and momentum to each particle. In their methods, reductions in 
numerical diffusion are achieved, but difficulties with mirltistreaming and numea~af 
noise are observed and must be dealt with. In spite of these difficulties, we fohow 
these examples in developing FLIP (fluid-implicit-particle). an algorithm. for fluid 
flow on an adaptive grid. 

First, by assigning momentum to each particle as described in Refs. c6, ‘i]? we 
eliminate a major source of computational diffusion. Since this introd:uces .’ 0 !n, 
possibility of particle multistreaming, in which two particles at the same pain: ?G 
space may have different velocities, we distinguish between the velocity with which 
a particle moves through the mesh and the momentum it carries, simih~ ro 
Harlow’s original PIC method [l] and to the full particle modei of McCror~- CP tri. 
[6]. Thus. we introduce the effect of collisions and eliminate multistreaming 
without introducing dissipation 

Second, we show that using bilinear interpolation and quadrilatera,I zones :o 
describe the particle and grid kinematics allows us to divide the computation CJ”Z~P 
into Lagrangean and convection phases. During the Lagrangean phase. the pa:- 
tiales play no role except to provide data for the calculation on the grid. Wi~en.~ as 
in other KC methods, we solve the equations of motion on the grid we may- choose 
from among many solution algorithms including implicit methods, which are useful 
in problems with voids. We are also free to extend the method to more complicated 
models, such as magnetohydrodynamics. (Our examples are calculated using he 
artificial viscosity method.) 
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Third, we observe that the information carried by the particles is enough to 
characterize the fluid flow, reducing the grid to a computational convenience as in a 
plasma simulation. Thus, we may use an adaptive grid with arbitrary displacements 
from one time step to the next without loss of information. 

In outline, we describe a particle-in-cell method for an adaptive mesh, FLIP, and 
present the results of a shock-on-step calculation and of a shock interacting with a 
thin shell. We intend to provide enough information so that the rather simple code 
corresponding to the method can be written. Thus, we include not only a descrip- 
tion of the FLIP representation, the transfer of information to and from the grid, 
and its kinematic properties, but also an artificial viscosity method for the solution 
of the fluid equations on a Lagrangean mesh. 

1. THE PARTICLE-IN-CELL METHOD 

a. The Particle Kinematics 

In the particle-in-cell method, FLIP, the fluid is represented by Lagrangean fluid 
elements, called particles, moving through a grid. The information carried by each 
particle specifies the mass, momentum, internal energy, and constitutive properties 
of the fluid in the vicinity of the particle. The information transferred from the par- 
ticle to the grid by projection permits the solution of the dynamical equations on a 
relatively small number of highly ordered points. As in other methods of this type, 

FEG. 1. A grid of nonrectilinear, quadrilateral zones is illustrated. Vertices, cell-centers, and particles 
are labeled v, c, and p, and the shaded area indicates generalized area weighting. 
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the cooperative use of the particles and grid results in an efftcient algorithm &r 
highly distorted flows with little numerical diffusion. 

Tesselating the domain, we construct a grid of convex quadriiaterals as shown in 
Fig. 1 with vertices at positions x,. (The arbitrary shape of the quadrilateral zones 
distinguishes FLIP from previous PIC algorithms for nonuniform grids [?I].) For 
convenience, we define natural coordinates (5, q) by mapping each quadrilateral 
onto a unit square in the space of the natural coordinates. At each vertex, the 
natural coordinates assume integer values (i, j). Elsewhere, the mapping between 
physical and natural coordinates is defined by bilinear interpolation, which can be 
written 

where (’ = (I .- i, q’ = q-j. When O<<‘, ?1’<1. x is within the quadrilateral cc3 
li. I). 

More generally, the interpolation can be written in the form 

-where s is a positive, continuous function with range [O, 23 and compact support. 
The function is normalized in the usual way, 

There is a natural correspondence between bilinear interpolation and 
quadrilateral zones. Consider displacing the vertices of the grid and constructing 
new quadrilaterals with the same connectivity as the original mesh. Further, con- 
sider points on the original and displaced meshes with the same natura! coor- 
dinates. It follows that the displacements of these points are given by 

since S, = s(< - i, q - j) is constant. On the straight lines joining the vertices, Eq. ( I ‘) 
is a linear function of either t or yl. Therefore, points lying on the zone boundaries 
2a the original mesh lie on corresponding zone boundaries in the displaced mesh, 

We denote the interpolation function in physical coordinates corresponding to s 
bjj 

from which it follows that 1 dV S= J, where J- S(.Y, ~)/2(5. rl). Since we choose to 
restrict s to functions whose support is independent of (5, ir) and depends only on 
I < - il. 1”~ - ji, the support of S is then a function of x, 
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The fluid is represented by a distribution of finite-sized particles whose properties 
are projected onto a grid by interpolation. With each particle, there is associated a 
label p, a position xp, a velocity up, a mass mp, an energy ep, and a color cp. 
Because of our choice of interpolation functions, the size of the particle for the pur- 
pose of projection is determined by the local grid spacing. The physical length scale 
is given by the interparticle spacing, not by the grid spacing. 

In our examples, we will use either nearest-grid-point (NGP) interpolation or 
bilinear interpolation to project the particle data onto the grid. NGP is defined by 

s(c_‘- i, q-j) = 1, o< Ii’-4 lq-jl <+, 

s([-i,fl-j)=O, otherwise. 
(3) 

With this interpolation, all of the particle properties are projected onto the vertex 
nearest the particle. The bilinear interpolation, given by Eq. (l), also can be written 

s(<-ii,?/--j)=(l-lI,i-i/)(1-lr--jl), o< It-ii, lq-jl d 1, 
(4) 

q-i, ‘1-j)=O, otherwise. 

This interpolation is a generalization of the area-weighting used in PIC [l]. (To 
project onto the center of cell (i, j), the arguments of s are replaced by (i + 4, j+ i).) 
As illustrated in Fig. 1, the support of a particle overlaps four cells. Higher order 
interpolation functions, such as those discussed by Monaghan [lo] or Hackney 
and Eastwood [19], generally overlap more than four cells and project onto a 
larger number of grid points. 

One can calculate a density from the particle data. The mass density, for exam- 
ple, is given at x by 

f?(x) = c mp 6(x - xp)/Y(x). 
!3 

Because this definition gives a discontinuous density, a more useful (because 
smoother) density function is obtained by convolving the density above with an 
interpolation function, 

P(X) = c ~~p~,iJ(X), (5) 

where S, = S(x - xp) = s( < - tp, g - VP j. (This regularization is usually interpreted 
as giving the particles finite size. However, it also means that the density at a point 
is determined by the number of particles in the neighborhood, as defined by the 
grid.) Other quantities, such as the center of mass or fluid velocity and the specific 
internal energy, are similarly defined by sums over particles, 

U(x) = 1 l?zpupSp/M (6) 
P 
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and 

I(x) = 2, e,S,;‘M, 

To model collisional fluids, we require that the particles at x move with the ffuid 
-veiocity, U( x ), 

dx,i’dt = U(x,) $19 ) 

rather than the particle velocity, u,. The fluid velocity at any x is calculated bj 
interpolation from the vertex velocity, U,, which is evaluated from Eq. (a), 

where 3, = s(< - i, F; -j). Any difference in the velocity of adjacent partic!es is 
revealed only as the grid spacing approaches the interparticle spacing. In that limit. 
U(s,) will tend to u,. (This prescription is the same as that given by 
and McCrory et al. 161.) 

Consider first the relative motion of the grid and the particles. When the grio and 
the particles move with the fluid velocity and the interpolation used in Eq. i 10) is 
consistent with the choice of grid (as bilinear interpolation is consistent with 
quadrilateral zones), the natural coordinates of the particle are constants o! the 
motion. To show this. differentiate Eq. (2) and substitute from Eq. (i0’) with 
s 

‘P- -S(~F-ir flp-J), 

1 xJds,,jdt) = 0 = dx,$it --r U\sv,,. 

Since the right-hand side is zero (cf. Eq. (IO)), sVP is constant and. therefore, the 
natural coordinates of the particle are constant also. 

Consider next the acceleration of the particles. Because the fluid is colhsionai. ihe 
acceleration also should be a function of x only, 

du,/dt = dtJ(x,);d~. 

ifferentiating EC?. (10) and noting that ds,,;dt = 0. we find, 

du,i’dt = 1 dU,.,/dr J\,~. i’l 
\” ) 

Since for numerical stability the particles move during the time interval i to I+ 3il 
with a velocity calculated at some intermediate time, t + Bb:, 4 d 6 d i, the motion 
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of the particle involves the acceleration. We calculate the motion by combining 
Eqs. (10 j and (11) 

dx,/dt = c (U, + (dLJ,/dt) 8dt) s,&). 

Only by interpolating the velocity and the acceleration in the same way are we able 
to solve the equations of motion on the grid without further reference to the par- 
ticles after we have projected their data onto the grid. 

One advantage of this procedure is clear if we consider the alternative described 
by McCrory et al. [6]. In their method, the acceleration at a vertex is assigned to 
the particles by NGP interpolation, Eq. (3), 

du,/dt = dU,/dt, 

while the particle displacement is calculated by bilinear interpolation. As a result, 
their method requires two references to the particles to solve the equations of 
motion rather than one. 

The particle equations of motion, Eqs. (10) and ( 1 1), give the correct motion of a 
single particle through the grid. That is, the particle motion is exactly as though 
there were no grid at all. The particle motion reduces to dx,/dt =up, and the par- 
ticle experiences no self force. 

Consider a single particle with velocity up. Its motion is given by Eq. (lo), which, 
substituting from Eqs. (6) and (8), yields 

dx,/dt = 1 ’ ~~pup&~pl~p~,p = up, 

where stp = s( 4, - i, yip -j). Thus, the particle moves as though the grid were not 
there. 

The drift of many particles exhibits a similar independence of the grid as shown 
in Fig. 2, where the motion of a cold ring of particles with initial velocity U, is 
depicted. As time progresses, the ring moves through an obviously distorted mesh 
without apparent relative motion between the particles. (This simple example is 
also a sensitive test of the amount of dissipation in the formulation. When we 
require that energy as well as momentum be conserved as described in Section e 
below, the ring heats and expands as it moves through the mesh. The expansion, 
which is quite apparent, is due to the conversion of less than 0.5% of the initial 
kinetic energy to internal energy. This small dissipation can be reduced by using a 
smaller time step and a value of 0 < 1.) 

The absence of a self force, one exerted by a particle on itself, requires only that 
the equations of motion on the grid conserve momentum. Consider once more a 
single particle on the grid. Since only those vertices where sVp # 0 will experience 
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FIG. 2. A ring of initially cold particles moves through an adaptive grid. In (a) and (b!. the grits 
corresponding to 0 i and 0.7 transit times are displayed. In (c ). the particles are plotted at both times 
without energy conservation. and in (d), with energy conservation imposed The expansion in 12.: is 
cabsed bq the conversion of 0.4% of the inital kinetic energy into heat. 

accelerations, momentum conservation requires only that the acceleration of these 
vertices satisfy the equation 

c M, drJ,.,id? = 0. 

When this equation is satisfied (as it is for a symmetric interpolation hmction), the 
fcrce on the single particle must be zero, for 

tw,du,,/dt = inp 1 dU,,!dt svp = c M,. dU.:;d: = C, 
\’ \ 

EeBoeuf e: n!. [7] approach the modeling of a coilisionai fluid differently. In 
their algorithm, the particles move with the particle velocit; 

dx,/‘dt = up, : 10’) 

rather than the fluid velocity, U(x,). To reduce multistreaming, a Krook-type drag 
term is added to the momentum equation to reduce the difference between the par- 
ticle velocity and the local fluid velocity, 

du,/‘dt = dU(x,),,dt + v(U(xpt -up). 8 ‘. 1 i \ i;; ) 

at a rate determined by the value of the parameter 1%. When 17 is very iarge, the dit- 
ference between particie and fluid velocity will decay rapidly. and their method 
becomes indistinguishable from that of McCrory rt rrl. [OJ. 
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b. The Dynamical Equations 

In FLIP, solutions to initial boundary value problems are generated by marching 
finite difference approximations to the equations of motion in time. At each time 
step, the solution is advanced in two phases. In the Lagrangean phase, during 
which the grid moves with the local fluid velocity, the particles and the grid do not 
move relative to each other and finite difference equations approximating the con- 
tinuum flow equations on the grid are solved. Since there are many fewer grid 
points than particles, this is a very efficient substitution. In the convective transport 
phase, which we will describe in Section f, the particles are relocated as the grid 
moves and the fluid information on the grid is regenerated from the particle data. 

In deriving the finite difference equations on the grid, we must make them con- 
sistent with the kinematic description given above, with the particle representation, 
and with the conservation of mass, momentum, and energy. Of course, these con- 
straints are conflicting, and we must make certain compromises. In our for- 
mulation, the continuity and internal energy equations are consistent with the par- 
ticle description; the momentum equation is formulated to conserve energy. 

In the Lagrangean frame, the mass, momentum, and energy equations are written 

dp/dt + p(V . U j = 0, 

p(dU/dtj+VP-V(A+2p)V.U+Vxp(VxU)=O, 

and 
p(dI/dt) + P(V. U) - (A+ 2p)(V. U)” - p(V x U)‘= 0, (12) 

where p. I, P, and U are the density, internal energy, pressure, and velocity of the 
fluid. For constant 1 and p, the viscous terms in the momentum equation reduce to 
standard form [ll]. However, only those viscous terms in the internal energy 
equation are retained that are explicitly dissipative when the artificial viscosity coef- 
ficients are positive. 

The continuity and internal energy equations are easily written consistent with 
the particle representation. The continuity equation is automatically satisfied by the 
PIC representation described above. Differentiating the definition of the density 
with respect to time, and noting that ds,/dt = 0, we find 

dp,ldt = c mp.sp d(J-‘)/dt = -p(V. U), 
P 

where the divergence and curl of the velocity are given by differentiating Eq. (IO), 

v~u=~u;vs,, (13) 

where S, = S(x -x,), and 

vxu=ps,xu. (14) 
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The internal energy equation can be written by substituting Eqs. (13) and ( L4) 
directly into Eq. (12) 

where Q is the viscous pressure, 

Q- -(i+2pjCVS,~U,t 

and v is the viscous shearing stress, 

y = p 2 vs,. x uv. 

Because we require energy conservation, the momentum equation does no: 
follow directly from the definition of the grid variables. Instead, we begin by 
calculating the change in kinetic energy, which is given by 

where we have substituted from Eq. (10). However, we simplify the so’rution of t?-AZ 
numerical equations by replacing the definition above by 

pu (tnr/drj = p 1 s,.u,, (ffTJ:‘dij, 

which is linear in the interpolation function. There is no evidence that this sub- 
stitution causes any instabilities, but it does introduce an error in the parWe 
energy, which we discuss below. 

The resulting change in the total energy is given by 

We note that the vertex velocities are independent so that the term inside r%e 
brackets must vanish. Since this term is the momentum equation, we are guarsn- 
teed conservation of energy if we use 

pS,.(dJ,.!dt) = VS,(P + Q j + VS, x iy (l;) 

to advance the velocities. This equation is easy to difference, for it requires only that 
we differentiate the interpolation function and it avoids the task of constructing dif- 
ference equations that satisfy the product rule. This technique originated with Goad 
1121, who identified it with the principle of virtual work In mechanics The 
relatIonship between Goad’s method and the finite element method is discussed by 
tascaux [IS]. 
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c. The Diffprence Equations 

A finite difference approximation to the momentum equation on the grid of 
quadrilateral cells (in which each cell is labeled c with volume I’,, J(x,) = V,, and 
cell center x, = xi, x,/4), is derived by integrating Eq. (16) over the domain 

M,(aTJ,/dt) = 1 dV{VS,JP + Q) + VS,. x w}. 
D 

where the substitution of the vertex mass follows from Eqs. (5) and (8). 
To evaluate the integral, we make certain simplifying assumptions. First, we 

assume P is constant within each cell and equal to 

PC = P(P(x,), md). 

Second, we replace VS,, within each cell by its average value over that cell? 
d,, = 5 dVVS,/V,, which we call a geometric coefficient. With these 
approximations, the dilatation and circulation of the fluid within a cell are com- 
puted from linear combinations of the vertex velocities, 

and 

(VxU),=Cd,,xU,. 

After integration, there results a sum over the cell indices within the support of S, 
and the momentum equation is then written 

The number of terms in the summation is determined by the support of S: the 
further S extends, the larger the number of terms. 

The geometric coefficients for bilinear interpolation are easily derived by differen- 
tiating Eq. (1) above. With bilinear interpolation, there are just four terms in the 
summation corresponding to the four cells sharing vertex v. In each cell, there are 
eight coefficients in Cartesian or twelve in cylindrical geometry. 

The use of averaging over the cells to derive difference equations, while simple 
and direct, is not completely satisfactory in all applications. Although specifying the 
divergence and curl determines the velocity to within a constant, the difference 
approximations to them do not since the approximations and the average velocity 
give only three relations among four variables. Consequently, one has the freedom 
to construct velocity fields that satisfy the three relations, but correspond to distor- 
tions of a kind that lead to the bowtie instability often seen in Lagrangean 
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calcul2tions. Typically, velocities like these develop as a result of cumulative error 
rather than instability, and can be suppressed by adding additional dissipation to 
the momentum equation [13]. In our calculations, the degeneracy is not a problem 
because the mesh is regenerated externally [4]. 

d. Advancing the Equations of Motion in Time 

The equations of motion are marched in time, with time step At. Each cycle, the 
grid variables, p, P, U, I, Q, and w. are initialized from the particle data. The new 
time level values of these variables can be calculated from the equations 

and 

where M,, is that portion of the vertex mass contributed by particles in cell c. and 
Ug = t!IUJ + ( 1 - N) Uy , with $ < 0 < 1. When PC = Pz the equations are explicit and 
the time step must satisfy the Courant condition. When “, = PE, the equaiions are 
semi-implicit and are usually solved assuming cEP:.‘& = const. so that Ui. may be 
eiiminated between the continuity and momentum equations to give a single, 
second-order equation for the pressure. The implicit form of the equations is very 
useful when there are voids in the domain. When there are voids, and with any 
interpolation other than NGP, the vertex mass may go to zero more rapidly rhan 
the pressure, resulting in v-ery large values of the temperature and the sound speed. 
When such singularities in the sound speed occur. the implicit equations assume the 
appropriate form for incompressible flow and the compuned acceleration remains in 
scale automatically [17]. 

When 8 > +, the equations are dissipative; the dissipation is quadratic in ihe 
acceleration and proportional to (0-t). The last term, which adds the dissigated 
energy back into the internal energy to give overall energy conservation, is derived 
by projecting (U’ + U”);2 = U’- (0 - i)(U’ - UO) onto the momentum equation io 
calculate the change in the kinetic energy. 

We remark that we have assumed in deriving these equations that the con- 
tribution of the “kinetic” pressure, which is equal to 
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is small and can be neglected. There is evidence from numerical experiments that 
the kinetic pressure is small except in shear layers or other strongly accelerated 
flow, where it is observed to be 10% of the total pressure. 

Boundary conditions are applied to the equations in the usual way. For example, 
no-slip or free-slip conditions are applied directly to U’ by setting U’=O or 
UH. fi = 0, respectively. 

e. The Particle Dynamics 

To transfer the results of the solution of the equations of motion from the grid to 
the particles, we interpolate the accelerations onto the particles, 

(20) 

and advance the particle positions, 

x; = x”, + U”(x,) At. (21) 

Note that the boundary conditions do not appear explicitly in these equations. 
Rather, they are felt through changes in the fluid velocity at the boundary points. 
For example. at a no-slip wall, U” and U’ may both differ from zero but U” will 
satisfy the boundary conditions. As a particle approaches the boundary, its velocity 
will approach zero as well. 

To advance the particle energy and conserve energy, we must normalize changes 
in the energy of each particle so that the sum of the fractional parts projected onto 
each particle sum to the whole of the change in the energy on the grid. Within the 
constraint of having to conserve energy, we are free to normalize in various ways. 
We choose to normalize changes in the internal energy due to PdV work by the cell 
internal energy and those due to viscosity by the cell mass. We reason that PdV 
work ought to change the particle energy according to its contribution to the 
pressure, but that viscous heating should heat hot and cold particles equally. The 
change in particle energy is given by 

e1 =e” 
P P 1 -c pc(V ’ UeLspc At/p&? 

c 

- mp 
! 

C(~c(V~Ue)-~~~(VxUe))sp,~t/pc 
c 

+ mp c cut - uy s,,(B - f) 

+ mp 1 ((u~)‘-(u~)2)s,p-((u;)2-(u~)2) 
i 

2. (22) 
Y 

Thr first term in the particle energy equation is the PdV work, the second the 
viscous heating, the third a correction for the dissipation introduced by the 
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backwards Euler differencing, and the fourth for an interpolation error descrrbed 
below. 

When the accelerations are transferred to the particies. the change in the kinetic 
energy of the particles is not equal to the change in the kinetic energy calculated on 
the grid. The grid energy is linear in the interpolation fxrction while the particle 
energy is quadratic. 

If the error is absorbed by the internal energy, total energy is conserved. The 
result is generally satisfactory because the error is smal! and the correction positive 
definite. 

Consider the difference between the kinetic energy of the grad and that of the par- 
:ic?s. This difference. or error in the kinetic energy transfer. is 

Th:s equation can be written in the quadratic form 

where 

and the elements of the transfer matrix are given by 

The transfer matrix is symmetric and diagonally dominant since x:,, T& = 0. 3%~: 
by a theorem proved by Gershgorin [14], the eigenvalues of the matrix are real 
and positive and the error in the kinetic energy transfer for each particle can be 
written 

where A: are the eigenvalues of the matrix. [For nearest-grid-point interpolation. 
the transfer matrix and the eigenvalues are zero and the energy error is zero.\ 
Therefore (except for nearest-grid-point interpolation), the error in the kin& 
energy transfer is negative definite particle by particle, the correction in the inrernai 
energy is positive, and the overall scheme is dissipative and energy conservative. 

We repeat the analysis for the algorithms which include a drag term such as 
those described by McCrory PI al. [6] and LeBoeuf ,~t :;/. j7] In their algorithms. 
Eq. (20) is replaced by 
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When v = 0, Eqs. (20) and (20’) are the same. When v = 1, Eq. (20’) reduces to, 

u; =c u;s,,,. 

We note that the Krook-type term in Eq. (20’) is consistent with momentum con- 
servation, 

2 nzp(u~sp” -u”,) = 0, 
“.P 

but not with energy conservation. We can demonstrate this by repeating the steps 
leading to Eq. (23) with the result 

E= -4 1 AU,. T;,.(AU,, + 2vU;). (237 
P,V,V’ 

The error in Eq. (23’) is no longer in quadratic form. Thus, except for NGP inter- 
polation for which the error is zero, the sign of the error is indeterminate. The error 
is also O(At) rather than O(At’) as in Eq. (23) and therefore the total error in a 
given calculation will not decrease with the time step. For these reasons, it appears 
that algorithms using drag terms to reduce multistreaming cannot be extended suc- 
cessfully to bilinear interpolation. 

f. Convection 

At the end of the Lagrangean phase of the calculation we regenerate the grid, 
either to restore it to its original configuration or to adapt to the solution of the 
dynamical equations. The particles remain stationary, but we must relocate them 
on the displaced grid. 

The relocation problem may be stated quite simply. Our information about the 
location of the particle relative to the grid is inaccurate as soon as the grid is 
moved, because the information is local. Thus, we must develop an algorithm to 
relocate a point xp within a cell on a mesh of quadrilaterals. When the mesh is rec- 
tilinear, as it is in most PIC methods, the problem is so easily solved as to be no 
problem at all. When the mesh is nonrectilinear, some sort of search is necessary 
because the geometry changes from cell to cell. 

Where the natural coordinates are defined by Eq. (l), xp is in a cell with index 
(i, j) iff 

When xp is in another cell, other values of (5, yl) are obtained from the transfor- 
mation. Usually, these are approximately correct for a neighboring cell so that a 
systematic search with intermediate solutions giving the next indices to test will suc- 
ceed in a number of steps approximately equal to ((5 - to)’ + (4 - Y~O)~)“~, where 
(to, 1’) is the initial guess. 
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In a normal fluid fiow calculation, the relative motion between the grid and the 
particles is limited. Time step constraints imposed by the algorithm for the 
dynamical equations limit the particle displacement to one cell width per time step 
and the regeneration of the grid from one time step to the next will usually rest& in 
a new grid that is very much like the old one. Under these conditions, we may 
expect many particles to remain in their original cell each time step, and most of the 
rest to move only one cell away. Therefore, the natural coordinates from the 
previous cycle are a good starting point for a search, and the algorithm should suc- 
ceed after one iteration for almost all the particles. This makes the search very 
efficient. Of course, the algorithm must cope with exceptional cases as well because 
we do not want to limit the time step bv particle motion if it should be usefuul to 
move the mesh more aggressively. 

Even when it is known that x, is not in cell (i, ,j), Eq. (1) can be solved for 
(<‘, q’) as follows: Define 5” = 5’ - f, rl” = ‘I’ - 4, and rewrite Eq. (I) as a TayEor 
series expansion about the cell center, 

x,- x,=Xg<” + X,Ff’+ Xt,,<“Ff’- 

where xE = ax/?<. xV = dx/i;~l, xc4 = ir’x/d[ ~31. and x, = x:,x,/4. The derivatives a:e 
easily evaluated by differentiating Eq. (1). Solving the componenr equations for 4” 
yields the quadratic equation 

where 

Hn choosing the sign, we assume that the cells are only moderately skew, so that 
4ac > b’, and convex, so that b > 0. 

When the particles change cells, new values of (i, J) can be calculated from the 
natural coordinates. Substituting these into Eq. (1 j will not satisfy the equations, 
but the indices can be corrected so that a recalculation of the natural coordinates 
will reproduce xP and complete the search. 

In exceptional cases, as when the discriminant is negative so that the transform is 
complex, or when b is negative so that the extrapolated mapping is no longer con- 
vex, the transform misleads the search. For example, when the grid is very skew, the 
values of the natural coordinates can become complex even though all the cells are 
convex. When the particles are displaced from their original ceil, extrapolating the 
mapping beyond a cell is not an accurate approximation when the geometry 
changes radically from one cell to the next. In such cases, a geometric test sup- 
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plements the coordinate transformation and directs the search, which then shifts 
one cell at a time. 

It is convenient to store the natural coordinates of the particles, since they are 
used often each computation cycle in the interpolation between grid and particles. 
The physical coordinates are easily calculated from Eq. (1). 

We have also found a linked list data structure to be useful [19]. We update the 
linked lists as particles move from cell to cell, and generate short cell-ordered lists 
when vectorization is sufficiently rewarding to warrant the cost. For example, there 
is a significant number of computations to be done in the solution of the dynamical 
equations, all of which can be vectorized on the Cray computer. For this portion of 
the calculation, short lists pay for the cost of creating and maintaining them. 

g. Review of the Computation Clde 

In this section, we review the computational algorithm by listing the steps in a 
computation cycle in sequence. Beginning with the projection of particle attributes 
onto the grid, the sequence of steps is: 

i. We project the particle data onto the grid by interpolation, 

pc=c q&xlK, (5) 

M,-im,.r,,. (8) 

U,, = C n~p~pSpvlMv, (6) 
P 

and 

I, = C epspc/vc V,. 
P 

ii. We solve the Lagrangean equations of motion, first Eq. (18) for Uf, 

0 = M:{U:- U:} -1 (d& + Q,) + d,, x &?} V,O At; (18) 

second Eq. (17) for pJ, (but only if the equations are implicit), 

o=p; 1 +Cd,;U& At -p;; 
> 

(17) 
Y 

and finally we advance U,. fully, 

u; = (UT - (1 - 0) u;ye. 

It is not necessary to solve Eq. (19) for 1:. 
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iii. We solve the particle equations of motion 

x; = x”, + U”( xp) At, 

,I =,o 
P P 1 

1 -c P,(V V), spc At/&c\ 
c I 

- mp 
i 
~:Qc(-J”,-w:.tVx 

c 

+ Hip c (Ul, - Uy?)’ s,,(6 - 4) 

iv, We regenerate the grid and solve for new particle natural coordinates 

<“=(-h + l:‘(b2 - 4~7~) $20, axj 

where 

v. If linked lists are used, they are updated at this time. 

2. NUMERICAL EXAMPLES 

The properties of the adaptive PIC algorithm are illustrated in two numerical 
examples: flow over a step and the interaction of a shock wave with a thin foil. 
Using these examples, we examine the accuracy of PIG compared with finite di:^- 
ference methods. We also illustrate the properties of alternative PIC formu!adons, 
and explain the use of adaptive zoning in problems with shocks or contact discon- 
iinuities. 

W-e consider conhned flow- over a step on the doinain shown in Fig. 3. A similar 
problem has been studied by Woodward and Colella [lS]. In the siep flow 
problem, Mach 3 flow enters a duct with smooth, plane-parallel walls a distance 1, 
apart. In the duct, there is placed a step with a rough surface 0.6L in from t-he 



332 BRACKBILL AND RUPPEL 

orifice. The height of the step is 0.2L. The domain of the calculation extends 3L 
from orifice to outflow, where continuative boundary conditions are imposed. 

i. Accuraq~: Comparison with Finite Difference Methods. We evaluate the 
accuracy of FLIP by comparing results for supersonic flow with particles to those 
obtained using finite difference methods. The results of many different methods are 
available from previous studies [lS, 161, and comparisons allow us to place PIC 
accurately within the hierarchy of methods available. 

We will first attempt to classify FLIP according to some standard scheme. 
Woodward and Colella [1.5] classify the various methods for treating problems 
with shocks into three categories. The categories, listed in order of increasing 
accuracy, are artificial viscosity, linear hybridization, and Godunov’s method. 
According to our previous description, the PIC method is an artificial viscosity 
method, because artificial viscosity is used in the Lagrangean phase of the 
calculation. However, in two-phase Lagrangean-Eulerian methods, [ 171 the way 
convection is treated is important. Woodward’s BBC code, which also uses artificial 
viscosity in the Lagrangean phase, obtains improvements in accuracy by using a 
linear hybrid of first and second order schemes to calculate convection. and by 
comparison BBC is nearer in accuracy to linear hybrid schemes than to more stan- 
dard, single phase artificial viscosity methods [IS]. Thus the way convection is 
calculated should determine the classification of the method. 

We compare FLIP results with a code developed by Saltzman [16]. His code 
uses flux-corrected transport to calculate convection in the Eulerian phase of a 
Lagrangean-Eulerian code. Since the Lagrangean phase of his code uses the same 

a b C d 

FIG. 3. In (a), the body-fitted grid with 20 x 60 zones used in the finite difference calculations is plot- 
ted. Mach 3 flow enters at the top and exits at the bottom. In (b), (c), and (d) are plotted the uniform 
grid used in FLIP, the velocity vectors corresponding to the initial flow (which enters from the bottom). 
and the particles (with asterisks denoting the fixed particles which define the step). 
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difference equations as used in FLIP, the major differences in the results are due ic 
our using particles to represent the fluid. 

There is also a minor difference in the meshes used m the two caiculations, as 
shown in Fig. 3. The mesh for the FLIP calculation has a rectangular boundary 
that includes the step. The mesh for Saltzman’s calcuiations uses body-fitted coor- 
dinates that exclude the step. Because of the small zones at the corner of the step :.n 
the body-fitted mesh, Saltzman’s calculations require 5ve times as many time steps 
as does FLEP, even though the stability conditions are simiiar. 

Initially, the flow velocity is constant everywhere. However, as time progresses a 
bow shock and a sequence of reflected shocks form tvithin the duct, What makes 
the problem difficult to do is that each reflected shock is weaker than the Last. a-d 
numerical dissipation or lack of resolution will eventually dominate. Because of the 
no-slip boundary conditions on the step in our calculations, a boundary !ayer forms 
there and partially obstructs the flow after several transit times. 

The development of the flow in time as calculated with Saitzman’s code is 
illustrated in Fig. 4. where a sequence of pressure contour piots are shown at inter- 
cais of one transit time, L!‘(ul. These results will be the standard for compari.son. 
The mesh for this calcuiation is divided into 20 x 00 zones. 

Hn comparing the PEC results with those shown in Fig. 4, xe first test the effect of 
the number of particles per cell. The results are illustrated in Fig. 5, where ;he 
pressure contours after three transit times are shoxxn for calcule:ions with 4. 9, Ii. 
and 35 particles per cell. With 4 particles per cell. there is so much “noise” due 10 
the granularity of the representation that the shock structure i S difficult tc ideIi:;ify. 

W5th 9-25 particles per cell, the results are more neariy comparable to the timte die- 
ference results. At least. all of the reflected shocks can be identified. and they are i:1 

b 

FIG. 4. The resulrs of the finite difference calculation For Mach 3 flow over a step are iliustrated ky 
pressure contours at t = 1, 2. 3. and 4 transit times in (a-c! ). 
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L 
a D C C I 

FIG. 5. Pressure contours from FLIP calculations of Mach 3 flow over a step are plotted at I = 3 
(transit times) with 4, 9, 16, and 25 particles per cell in (a), (b), (c), and (d). respectively. 

the correct locations. With as few as 9 particles per cell the major features of the 
flow appear to be resolved. In Fig. 6, a sequence of pressure contours is shown for 
the calculation with 25 particles per cell. With 16-25 particles per cell, the particle 
contribution to the error is comparable to that from the grid, and further increases 
in the number of particles result in only small, additional increases in accuracy. 

From these calculations, we conclude that the particle code can do similar 
problems as can be done with a finite difference code. The accuracy is less than with 
finite difference methods. The decrease in accuracy (or, equivalently, the increase in 

a 
-- 

b C t 

FIG. 6. Pressure contours from a FLIP calculation with 25 particles per cell are plotted at times 
corresponding to those in Fig. 4. 
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effort required for comparable accuracy) means that when efficiency is an issueI 
FLIP should be reserved for problems that are very difficult to do otherwise. such 
as the shock--foil interaction problem discussed below. 

ii. Accuraq~: Comparison with Alternative PIC F~rtnulrrtionr. As we ha-x dis- 
cussed earlier, there are several differences between our PIC formulation and that of 
McCror:y rt a/. [6] and LeBoeuf et ai. [7]. One difference is their use of a drag 
term to reduce multistreaming, and the other is the use of NCP interpolation oy 
LeBoeuf et al: [7] to calculate the density, internal energy, and velocity on the grid. 
We use computational examples to test the effect of these differences in two. 
separate experiments. 

First, let us consider NGP interpolation. When KGP interpolation rather r.han 
‘bilinear interpolation is used. the thermodynamic variables change discontinuously; 
nhen a particle moves from one cell to another. This is similar to the originai PIG. 
where mass weighted fractions of the donor cell energy and momectum are cazied 
by particles to the acceptor cell. One might expect large fluctuations to develop 
driven by fiuctuations in the pressure. However, Harlow argues that cell crossings. 
themselves are dissipative and introduce an “effective viscosity” which increases ES 
the number of particles moving from one cell to another in a time step [T 3~ Con- 
versely, particle “ringing” in stagnated flow, which is often observed in PYC 
calculations, is dne to the absence of dissipation. 

If ;his argument is applicable, we ought to see much less “ringing” in FLIP at all 
flow speeds even though cell crossings in FLIP are not dissipa.iive because bilinear 
interpolation reduces the fluctuations that drive ringing. In Figs. 7b and d there is 
very little evidence of ringing with bilinear interpolation at Mach 3 or at Mach r. 

F:G. 7. Particles are plotted at I = 3 transit times fsr Mach 3 and Mach : flea with nenrec:-grid- 
?oint mterpoiaticn in (a) and (c), and for Mach 3 and Mach 1 flow wi:h bilinear ir?:er;soiati;n in :b: 
and Id). Note the partick ringing in (cl. 
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There is little evidence of any deviation from an orderly particle distribution, except 
in the boundary layer where one should see it. On the other hand, if we replace the 
bilinear interpolation defining the density and energy by NGP interpolation, the 
results, also shown in Fig. 7, indicate a strong particle ringing at Mach I (Fig. 7c) 
but not at Mach 3 (Fig. 7a). As time progresses, the “ringing” increases in 
amplitude, but not exponentially. 

From these and other results not shown, we conclude that bilinear interpolation 
is better to use for flows where the thermodynamic pressure is significant compared 
with the kinetic pressure. In our example, NGP gives results with some ringing for 
transonic flows, and even stronger ringing for low speed flows. Even bilinear inter- 
polation gives results with ringing as the Mach number is decreased further. 
However, with implicit differencing in time and bilinear interpolation the ringing is 
suppressed at all Mach numbers. 

Next, we replace Eq. (20) by Eq. (20’) and repeat the Mach 3 flow with 16 par- 
ticles per cell and v =O.l. (This increases the similarity of FLIP to the method 
described by McCrory et al. [6].) Because we are requiring energy conservation, a 
larger value of v results in an instability when the correction to the particle internal 
energy is negative. The results of the calculations are shown in Fig. 8 after three 
transit times. Compared with the contours in Fig. 6, the ones in Fig. 8 do not show 
clearly the second reflected shock, much less the third. We conclude that a Erook- 
type drag term when used with bilinear interpolation to reduce multistreaming will 
cause a significant loss of accuracy. 

As we noted earlier, when NGP interpolation is used Krook-type drag is not dis- 
sipative. However, the “ringing” we observe with NGP is a more apparent problem 

a b C d 

FIG. 8. The pressure contours for a calculation of Mach 3 flow over a step with a Krook-type drag 
term to reduce multistreaming are plotted. Compared with the results shown in Fig. 6 without drag, the 
solution with additional dissipation has much less structure. 
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than muitistreaming. It seems also to be present in the results of Ee 

In their calculation of the Kelvin-Helmholtz instability. In their particle plots. there 
are striations and gaps in the particle distribution. 

We now consider the use of adaptive zoning with particles. By comparing the 
results in a calculation of flow over a step with those for shock interaction with a 
thin foil. we show that adaptive PIG is most useful in those problems for which the 
narticle representation is most applicable. There, its use enables one to emp’loy zerl; 
crude meshes. yet still capture the essential features of the flow. 

First. we show the results of an adaptively zoned calculation of flow over a step 
ir Figs. 4 and 10 with 20 x 60 zones. The adaptive zoning is generated by micimiz- 
ing the functional 

as described in Ref. [g]. In the calculation shown, the Eveight function II’ is given by- 

v+here YC is the number of particles in cell c, li is the distance from the corner of the 
step, and PO is the inflow pressure. Because the gradients in the pressure are less 
meaningful in cells where there are fewer partic!es, the weight function is made me 
scale with IV,. The factor d prevents very small cells from forming in the stagnation 
region and also amplifies the gradients near the outflow boundary where the shocks 
are weaker. 

a b C d 

adapted grid for Mach 3 flow over a step is piotted. The grid is adapted I 
: p’essure. 
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a b C d 

FIG. 10. The pressure contours for a calculation on an adaptive grid are plotted at times 
corresponding to those in Fig. 4. 

The refinements in the grid spacing, shown in Fig. 9, are correlated with the 
pressure gradients, which can be deduced from the pressure contours shown in 
Fig. 10. The results of the adaptively zoned calculation are somewhat improved 
over those in Fig. 6, although the pressures have been smoothed so that fluc- 
tuations do not drive the adaptive grid. The improvement obtained with adaptive 
zoning is not as dramatic as that reported by Saltzman [16]. To obtain that kind 
of improvement, one must make the volume weighting term more dominant in 

a b d 

FIG. 11. The 50 x 100 grid for a calculation of the interaction of a shock with a thin foil is plotted at 
I= 10, 20, 30. and 35 problem time units in (a-d). The right, top, and left boundaries are free slip, rigid 
walls, and the bottom boundary is a prescribed inflow boundary. The passage of the shock along the foil 
causes a progressive refinement of the zones. 
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Eq. (26). However. with a particle code. the smallest zone must coctain at least ace 
particle and this places an upper limit on the adaptivity of the mesh. For example, 
with 9 particles per average cell, the linear dimensions of The smallest zone can be 
no smaller than one-third the average value. 

We next consider an obliquely incident, p!ane shock which is driven into a thic 
foil. Initially, the foil density is 200 and the fill gas density is 0.2 in problem units. 
The shock is amplified by reflection from a rigid wail, and interacts a secocd time 
with the foil and compresses it. 

A very fine resolution, adaptive grid with 50 x 100 zones is shown in Fig. 11 at 
: - 10, 20: 30. and 35 units of problem time. The results obtained with t.his grid at /- 
the cost of an hour of computing time will be our reference for comparison. The 
left, top, and right boundaries are rigid walls: on the bottom boundary, 3uiG is 
injected at supersonic speed. Initially, the domain is filled with cold gas at low den- 
Si y. ‘t 

The inflow of cold gas with density 0.4 in problem unirs at the bottom boundary 
drives a piane shock upward. It begins to interact with the foil. first crushing rhe 
:hin end of the wedge and driving it upward. As the shock begins to interact. :he 
mesh adapts to the pressure gradients as prescribed by Eq. (27). Since there are 
many more-particles in the foil than in the fill gas, as shown in Fig. 13. the zones 
tend to be more concentrated in the foil than in the fill gas for equal \alucs of tt: 
pressure gradient scale length. In the grids depicxed in Figs. L%a and b, the passaiyc 
of the shock is remarked by the grid; its response to the changmg pressure g:adien.ts 
is localized in Fig. Ild. the zoning reflects the increase in the compiexity oi‘ the 
soltiticn in the interior of the foil. 

In Fig. 1’2. density contours trace the history of the foil. The passage of the shoc:~ 
over the foil compresses and acceierates the foil upward b,,,: no;xCx al the ~peu oi _ 

FIG. 12. The dsrxity contours at tines corresponding .ro those in Fig. 1 i ere plotted Ncte the rip- 
pling 0: the foii in (ci and the folding at the to p. with separatim occurring ai the fold ir; idi. 
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a b C 

FIG. 13. The particles for the shock-foil problem are plotted at times corresponding to those in 
Fig. 11. Many details of the flow which are not evident in the density plot are visible in this represen- 
tation. Note the mixing of foil material from the lower apex with the gas flow, the jetting of foil material 
into the cavity along the left boundary in (c) and (d), the large amplitude deformation of the foil surface 
in (d), and the multiple shocks due to reflections from the foil and the wall in (b)-(d). 

the foil. Note the narrowing of the high density region as the grid is refined, which 
occurs because of the decrease in the effective size of the particles. In Fig. 12c at 
t = 30, a number of new features in the flow are apparent. The apex of the foil has 
been pulled away from the left boundary. Above the apex, the foil is rippled at 
regular intervals, and, near the top boundary, the foil is folded under. In the grid at 
the corresponding time, shown in Fig. llc, one can see concentrations of the zones 
at the ripples, indicating relatively stronger pressure gradients at these points. In 
Fig. 12d, the ripples have become nodules, and the section of the foil above the fold 
has separated. 

The rippling of the foil is the most significant feature of the calculations, as is 
evident from the particle plots in Fig. 13. In the plots, the foil is represented by 
asterisks, and the fill gas by dots. The rippling can be explained by an apparent 
Kelvin-Helmholtz instability driven by shear flow at the surface of the foil. The 
subsequent amplification of the ripples is due, evidently, to a Rayleigh-Taylor 
instability driven by the reflected, secondary shock. 

With adaptive zoning, some of the more important features of this calculation 
can be reproduced by calculations on a much cruder grid even when they are lost 
on a Eulerian grid with the same number of zones. On a Eulerian grid with 
15 x 30 zones, the instability disappears as shown in Fig. 14. With an adaptive grid 
using the same number of grid points, the instability is evident as shown by the par- 
ticle plots in Fig. 15. The adaptive grid for the calculation, shown in Fig. 16, is suc- 
cessful in correctly representing the unstable foil dynamics, because the pressure 
gradients driving the instability are resolved. This is a very encouraging result, 
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FIG. 14. In the particle plot for the shock-foil calculation on a Eulerian grid with IS x 30 zones, no 
evidence of a Rayleigh- Taylor instability is visible. The time sequence is the same in Figs. 1 l-16. 

because the adaptive calculation with the smaller number of zones required only 
2 3 min of computing time. With this kind of speed, FLIP calculations can be use 
as an inexpensive diagnostic tool. 

Of course, there is more complexity in the flow than is reproduced by the crudely 
zoned calculation. Some of this complexity is indicated by the depiction of the Cow 
on the fine grid by the particle plots in Fig. 13. Consider first the shock in the fill 
gas. %n Fig. 13a, the densely packed particles lie below the shock and above the 

FIG. 15. In the particle plot for the shock-foil calculation on an adaptive grid with 15 x 30 zones, 
iarge deformations of the foii by a Rayleigh--Taylor instability and jetting of the foil material as in 
Fig. I3 arc both visible. However, details of the shocks in the fill gas are not visible. 
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a b C 

FIG. 16. The 15 x 30 zone adaptive grid resolves the pressure gradients due to the interaction of the 
till gas with the foil. 

contact discontinuity between the initial fill and the injected gas. In Fig. 13b, a 
second shock transition is visible at the boundary between flow parallel to the foil 
and flow upward. In Fig. 13c, a reflected shock forms at the top boundary, and a 
shock also forms above the apex of the foil in the gas trapped between the foil and 
the left wall. The reflected shock is clearly responsible for folding the foil. Also 
evident in the particle plot is a jet of foil material moving upward from the apex of 
the foil into the trapped gas which also can be seen in Fig. 15. 

3. CONCLUSIONS 

Using the FLIP method, one is able to use adaptive zoning with the particle-in- 
cell representation to model complex geometries with many contact discontinuities. 
Since particles are easy to initialize and the adaptive zoning is automatic once the 
criteria for adapting the mesh have been chosen, FLIP is also easy to use. 

It is apparent that FLIP is less accurate than finite difference methods. It is also 
somewhat more expensive. With 9 particles per cell, which seems to be about the 
minimum number one should use, a third of the computation time each cycle is 
spent pushing particles, or about 20 ps per particle per cycle on a Cray. On the 
other hand, FLIP is more accurate than alternative formulations using lower order 
interpolation or drag terms in the momentum equation. 

However, the real value of FLIP is apparent in the shock-foil calculation where 
finite difference methods are not appropriate. The combination of the particle 
representation and the adaptive mesh gives the necessary special capabilities of par- 
ticles and the accuracy of adaptive zoning. When interfaces and discontinuities 
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requiring a Lagrangean description are to be modeled, the particle representation is 
flexible and powerful. When there are small. embedded features of the flow tc be 
resolved in the initial data or captured as they develop in the solution, the adaptive 
mesh gives the needed resolution automatically and efficiently in computer time and 
storage. 

We note again that the separation of the computation cycle into Lagrangean and 
Euierian phases is extremely useful. The separation allows us to choose from among 
many standard finite difference methods for the dynamical equations, including the 
one we have used in our examples which extends PIC to flow at all speeds using a 
time-implicit formulation. We also can extend the formulation to more complicated 
phenomena such as magnetohydrodynamic flow. 

Some properties of FLIP are poorly understood and further analysis is needed. 
For example, the source of “ringing” is incompletely understood, although the com- 
bination of bilinear interpolation and implicit differencing in time seems to suppress 
it. 
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