JOURNAL OF COMPUTATIONAL PHYSICS 65, 314-343 (1986)

FLIP: A Method for Adaptively Zoned, Particle-in-Cell
Calculations of Fluid Flows in Two Dimensions*

J. U. BrackeiLL! axp H. M. RUPPEL

Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Received January 3, 1985; revised October 23, 1985

A method is presented for calculating fluid flow in two dimensions using a full particle-in-
cell representation on an adaptively zoned grid. The method has many interesting properties,
among them an almost total absence of numerical dissipation and the ability to represent
large variations in the data. The method is described using a standard formalism and its
properties are illustrated by supersonic flow over a step and the interaction of a shock with a
thin foil.

INTRODUCTION

The particle-in-cell (PIC) representation has been used successfully to model
many aspects of highly distorted flow in two dimensions. [ 1-3]. In PIC, the fluid is
represented by Lagrangean mass points, called particles, moving through a com-
putation grid. Other properties of the fluid are assigned temporarily to the particles
in proportion to their mass to convect information from one cell of the grid to
another. Because of the Lagrangean description of the mass distribution, PIC codes
are notably successful in tracking contact discontinuities and in modeling highly
distorted flow. This capability has been exploited in a wide variety of applications,
including the modeling of hypervelocity impact, free surface motion, multimaterial
and chemically reacting flow, and magnetohydrodynamics [3].

Here, our goal is to make PIC even more useful by extending it to an adaptively
zoned grid [4]. With such a grid, which can resolve fine detail in a large system, we
can use the information carried by the particles more effectively in the solution of
the dynamical equations, especially when large changes in scale occur or singular
boundary layers form.

In extending PIC, we must ask first with which PIC formulation we should
begin. Since the development of the original PIC, many attempts have been made
to increase the accuracy of PIC [5-7]. As is well known, the accuracy of PIC is
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compromised by a large computational diffusion caused by transferring the momen-
tum from the grid to the particles and back in modeling convection through the
grid.

In increasing the accuracy of PIC, researchers have followed one of two
approaches. In work typical of the first approach, Nishiguchi and Yabe [5] have
developed more accurate momentum convection algorithms for PIC. As in the
original PIC, they transfer momentum information to the particles from the grid
before the particles are displaced, and then back afterwards. To increase accuracy.
they have restricted the transfers from the grid to the particles and back to changes
in momentum due to particle displacements, rather than to the momentum itself.
Thus, the diffusion introduced varies as the particle displacement, rather than as the
number of cycles in the calculation.

The second approach is suggested by the use of PIC in plasma simulation [R]
and has been followed by a number of researchers [6,77. In plasma simulation,
each numerical particle represents a large number of physical particles in a plasma.
In addition to position and mass, each numerical particle is assigned a charge and a
velocity from which a distribution function can be constructed. The grid carries no
permanent information and acts only as a computational convenience in organizing
the particle data while calculating the interaction between particies.

The success of PIC in plasma simulation suggests assigning more information to
each particle in fluid flow calculations for greater accuracy. McCrory er al. [67 and
LeBoeuf er af. [7], for example, use full particle models in which they assign inter-
nal energy and momentum to each particle. In their methods, reductions in
numerical diffusion are achieved, but difficulties with multistreaming and numerical
noise are observed and rmust be dealt with. In spite of these difficulties, we follow
these examples in developing FLIP (fluid-implicit-particle), an algorithm for fiuid
flow on an adaptive grid.

First, by assigning momentum to each particle as described in Refs. [6, 77, we
eliminate a major source of computational diffusion. Since this introduces ihe
possibility of particle multistreaming, in which two particles at the same point n
space may have different velocities, we distinguish between the velocity with which
a particle moves through the mesh and the momentum it carries, similar 0
Harlow’s original PIC method [1] and to the full particle model of McCrory o1 af.
[61. Thus, we introduce the effect of collisions znd eliminate multistireaming
without introducing dissipation.

Second, we show that using bilinear interpolation and quadrilateral zones ¢
describe the particle and grid kinematics allows us to divide the computation cycie
into Lagrangean and convection phases. During the Lagrangean phase. the paz-
ticles play no role except to provide data for the calculation on the grid. When, as
in other PIC methods, we solve the equations of motion on the grid we may choose
from among many solution algorithms including implicit methods, which are useful
in problems with voids. We are also free to extend the method to more complicated
models, such as magnetohydrodynamics. (Our exampies are calculated using the
artificial viscosity method.)
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316 BRACKBILL AND RUPPEL

Third, we observe that the information carried by the particles is enough to
characterize the fluid flow, reducing the grid to a computational convenience as in a
plasma simulation. Thus, we may use an adaptive grid with arbitrary displacements
from one time step to the next without loss of information.

In outline, we describe a particle-in-cell method for an adaptive mesh, FLIP, and
present the results of a shock-on-step calculation and of a shock interacting with a
thin shell. We intend to provide enough information so that the rather simple code
corresponding to the method can be written. Thus, we include not only a descrip-
tion of the FLIP representation, the transfer of information to and from the grid,
and its kinematic properties, but also an artificial viscosity method for the solution
of the fluid equations on a Lagrangean mesh.

1. THE PARTICLE-IN-CELL METHOD

a. The Particle Kinematics

In the particle-in-cell method, FLIP, the fluid is represented by Lagrangean fluid
elements, called particles, moving through a grid. The information carried by each
particle specifies the mass, momentum, internal energy, and constitutive properties
of the fluid in the vicinity of the particle. The information transferred from the par-
ticle to the grid by projection permits the solution of the dynamical equations on a
relatively small number of highly ordered points. As in other methods of this type,

A

FiG. 1. A grid of nonrectilinear, quadrilateral zones is illustrated. Vertices, cell-centers, and particles
are labeled v, ¢, and p, and the shaded area indicates generalized area weighting.
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the cooperative use of the particles and grid results in an efficient algorithm for
highly distorted flows with little numerical diffusion.

Tesselating the domain, we construct a grid of convex quadrilaterals as shown in
Fig. { with vertices at positions x,. (The arbitrary shape of the quadrilateral zones
distinguishes FLIP from previous PIC algorithms for nonuniform grids £9].} For
convenience, we define natural coordinates (£, n) by mapping each quadrilateral
onto a unit square in the space of the natural coordinates. At each vertex, the
natural coordinates assume integer values (7, j). Elsewhere, the mapping between
physical and natural coordinates is defined by bilinear interpolation, which can be
written

o Ferfs ' t AR \ ’ 17 P
x=[{(0 =) Xy + 0%y fH(L=EV T =) x + 1'% ) il
where ¢

(i, j).

More generally, the interpolation can be written in the form

=¢—1, n'=n—j When 0<¢, #' <1, x is within the quadrilateral cell

-

x=Y x,8(—i, 71— ), {2
v

where s is a positive, continuous function with range [0, 1] and compact support.
The function is normalized in the usual way,

Ji dédns=1; Ys(E—in—ji=1
Ip Iy

There is a natural correspondence between bilinear interpolation and
quadrilateral zones. Consider displacing the vertices of the grid and constructing
new quadrilaterals with the same connectivity as the original mesh. Further, con-
sider points on the original and displaced meshes with the same natural coor-
dinates. It follows that the displacements of these points are given by

X' —x=) (X, —x,)s,.

v

since s, = s{& — i, n — j} is constant. On the straight lines joining the vertices, Eq. {1}
is a linear function of either ¢ or #. Therefore, points lying on the zone boundaries
in the original mesh lie on corresponding zone boundaries in the displaced mesh.

We denote the interpolation function in physical coordinates corresponding to s
by

S(x(E, m)y=s(&—1,n—j)
from which it follows that jdVSz J, where J=d{x, y)/0(Z, 1) Since we choose 1o

restrict s to functions whose support is independent of {&, #) and depends only on
IZ—il, In— j|, the support of S is then a function of x.
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The fluid is represented by a distribution of finite-sized particles whose properties
are projected onto a grid by interpolation. With each particle, there is associated a
label p, a position x,,, a velocity u,, a mass m,, an energy e,, and a color c,.
Because of our choice of interpolation functions, the size of the particle for the pur-
pose of projection is determined by the local grid spacing. The physical length scale
is given by the interparticle spacing, not by the grid spacing.

In our examples, we will use either nearest-grid-point (NGP) interpolation or
bilinear interpolation to project the particle data onto the grid. NGP is defined by

s(E—iLn—j)=1, 0<|E—1i], In—Jl <3, 3
s(E—i,n—j)=0, otherwise.

With this interpolation, all of the particle properties are projected onto the vertex
nearest the particle. The bilinear interpolation, given by Eq. (1), also can be written

sE—in—j)=(1=E=i)1—=1In—jl), O<[E—i,In—jl<]1, @)
s(&—i,n—j)=0, otherwise.

This interpolation is a generalization of the area-weighting used in PIC [1]. (To
project onto the center of cell (i, j), the arguments of s are replaced by (i+ 3, j+1).)
As illustrated in Fig. 1, the support of a particle overlaps four cells. Higher order
interpolation functions, such as those discussed by Monaghan [10] or Hockney
and Eastwood [19], generally overlap more than four cells and project onto a
larger number of grid points.

One can calculate a density from the particle data. The mass density, for exam-
ple, is given at x by

p(x)=Y m, 5(x —x,)/J(x).
p

Because this definition gives a discontinuous density, a more useful (because
smoother) density function is obtained by convolving the density above with an
interpolation function,

p(x) =3 m,S,/J(x), (5)

where S, =S(x—x,)=s({—¢,, n—n,). (This regularization is usually interpreted
as giving the particles finite size. However, it also means that the density at a point
is determined by the number of particles in the neighborhood, as defined by the
grid.) Other quantities, such as the center of mass or fluid velocity and the specific
internal energy, are similarly defined by sums over particles,

U(x)=) myu,S,/M (6)
p
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and

I(x):zepsp/lwv '\7;
P

where

M(x)=Y m,S,. (8
P

To model collisional fluids, we require that the particles at x move with the fluid
velocity, Ulx),

v
H

dx,/dt =U(x,) {

N

rather than the particle velocity, u,. The fluid velocity at any x is calculated by
interpolation from the vertex velocity, U, which is evaluated from Eg. (6},

Ux)=) U,s,. (1)

v

where s, =s({— 1 5 —j). Any difference in the velocity of adjacent particles s
revealed only as the grid spacing approaches the interparticle spacing. In that jimit,
U{x,) will tend to u,. (This prescription is the same as that given by Hariow [ 1]
and McCrory er ¢l [6].)

Consider first the relative motion of the grid and the particles. When the gric and
the particles move with the fluid velocity and the interpolation used in Eq. (10) is
consistent with the choice of grid (as bilinear interpolation is consistent with
quadrilateral zones), the natural coordinates of the particle are constants of the
motion. To show this, differentiate Eq. (2) and substitute from Egq. (i0) with

S\p:S(S:p - iv ”p _j)9

Y x,(ds,/dt) =0 = dx,idi — Y U, s,,.

Since the right-hand side is zero (cf. Eq. (10)), 5.,
natural coordinates of the particle are constant also.

Consider next the acceleration of the particles. Because the fluid is collisional. the
acceleration also should be a function of x only,

is constant and. therefore, the

du,/dt = dU(x,)/dt.

Differentiating Eq. (10) and noting that ds,,/dr = 0. we find,

duyjdi =3 dUjdr s, (11)
v

Since for numerical stability the particles move during the time interval 1 to 7+ Ar
with a velocity calculated at some intermediate time, 1+ 847 1< 6 < {, the motion
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of the particle involves the acceleration. We calculate the motion by combining
Egs. (10) and (11),

dx,/di =Y (U, + (dU,/dt) 041) s,,.

v

Only by interpolating the velocity and the acceleration in the same way are we able
to solve the equations of motion on the grid without further reference to the par-
ticles after we have projected their data onto the grid.

One advantage of this procedure is clear if we consider the alternative described
by McCrory et al. [6]. In their method, the acceleration at a vertex is assigned to
the particles by NGP interpolation, Eq. (3),

du /dt = dU,/dr,

while the particle displacement is calculated by bilinear interpolation. As a result,
their method requires two references to the particles to solve the equations of
motion rather than one.

The particle equations of motion, Eqs. (10) and (11), give the correct motion of a
single particle through the grid. That is, the particle motion is exactly as though
there were no grid at all. The particle motion reduces to dx,/dt=u,, and the par-
ticle experiences no self force.

Consider a single particle with velocity u,,. Its motion is given by Eq. (10), which,
substituting from Eqs. (6) and (8), yields

ax,jdi =3 m,u,s.,/m,s.,=u,,
.

where 5., =s(¢
there.

The drift of many particles exhibits a similar independence of the grid as shown
in Fig. 2, where the motion of a cold ring of particles with initial velocity Uy is
depicted. As time progresses, the ring moves through an obviously distorted mesh
without apparent relative motion between the particles. (This simple example is
also a sensitive test of the amount of dissipation in the formulation. When we
require that energy as well as momentum be conserved as described in Section ¢
below, the ring heats and expands as it moves through the mesh. The expansion,
which is quite apparent, is due to the conversion of less than 0.5% of the initial
kinetic energy to internal energy. This small dissipation can be reduced by using a
smaller time step and a value of # < 1.)

The absence of a self force, one exerted by a particle on itself, requires only that
the equations of motion on the grid conserve momentum. Consider once more a
single particle on the grid. Since only those vertices where s,,#0 will experience

p— 15 N, —j). Thus, the particle moves as though the grid were not
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Fic. 2. A ring of initially cold particles moves through an adaptive grid. In (&) and {b). the grics
corresponding tc 0.1 and 0.7 transit times are displayed. In (c). the particles are plotted at both times
without energy conservation, and in (d), with energy conservation imposed The expansion in {2} is
caused by the conversion of 0.4% of the inital kinetic energy into heat.

accelerations, momentum coaservation requires only that the acceleration of these
vertices satisfy the equation

S M, dU, jdi =0.

v

When this equation is satisfied (as it is for a symmetric interpolation function), the
force on the single particle must be zero, for

m,du,fdt =m, Z du, jdt s, =) M. dU,di=0C.

v

LeBoeuf ¢f al. [7] approach the modeling of a collisional fluid differently. In
their algorithm, the particles move with the particle velocity

dx,/dt =u,, {107

rather than the fluid velocity, U(x,). To reduce multistreaming, a Krook-type drag
term is added to the momentum equation to reduce the difference between the par-
ticle velocity and the local fluid velocity,

du,/dt = dU(x,)/dt +v(U(x,) —u,). SR

at a rate determined by the value of the parameter v. When v is very large, the dif-
ference between particle and fluid velocity will decay rapidly, and their method
becomes indistinguishable from that of McCrory er 4l. [6].



322 BRACKBILL AND RUPPEL

b. The Dynamical Equations

In FLIP, solutions to initial boundary value problems are generated by marching
finite difference approximations to the equations of motion in time. At each time
step, the solution is advanced in two phases. In the Lagrangean phase, during
which the grid moves with the local fluid velocity, the particles and the grid do not
move relative to each other and finite difference equations approximating the con-
tinuum flow equations on the grid are solved. Since there are many fewer grid
points than particles, this is a very efficient substitution. In the convective transport
phase, which we will describe in Section f, the particles are relocated as the grid
moves and the fluid information on the grid is regenerated from the particle data.

In deriving the finite difference equations on the grid, we must make them con-
sistent with the kinematic description given above, with the particle representation,
and with the conservation of mass, momentum, and energy. Of course, these con-
straints are conflicting, and we must make certain compromises. In our for-
mulation, the continuity and internal energy equations are consistent with the par-
ticle description; the momentum equation is formulated to conserve energy.

In the Lagrangean frame, the mass, momentum, and energy equations are written

dp/dt + p(V-U) =0,
o(dU/dt) + VP —V(i+2u)V-U +Vx u(VxU)=0,

and
p(dldr) + P(V-U)— (A + 2u)(V-U)> — (Vx U)*=0, (12)

where p. I, P, and U are the density, internal energy, pressure, and velocity of the
fluid. For constant 4 and y, the viscous terms in the momentum equation reduce to
standard form [11]. However, only those viscous terms in the internal energy
equation are retained that are explicitly dissipative when the artificial viscosity coef-
ficients are positive.

The continuity and internal energy equations are casily written consistent with
the particle representation. The continuity equation is automatically satisfied by the
PIC representation described above. Differentiating the definition of the density
with respect to time, and noting that ds,/dt =0, we find

dpjdt =Y m,s, d(J )/di= —p(V-U),

P

where the divergence and curl of the velocity are given by differentiating Eq. (10),

V-U=Y U, Vs, (13)

where S, = S(x —x,), and

VxU=Y VS, xU. (14)
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The internal energy equation can be written by substituting Eqgs. (13) and {14}
directlv inta Fa (1)

v

where @ is the viscous pressure,

0= —(i+2u) Y VS, U..
and y is the viscous shearing stress,
y=u) VS, xU,.

Because we require energy conservation, the momentum ¢quation does no!
follow directly from the definition of the grid variables. Instead, we begin by
calculating the change in kinetic energy, which is given by

pU - (dUjdy=p ¥ U, S 5. AdU,dr),

vy’

where we have substituted from Eq. (10). However, we simplify the solution of the
numerical equations by replacing the definition above by

pU - (dUtdiy=p ) S, U, (dU, jdr),

which is linear in the interpolation function. There is no evidence that this sub-
stitution causes any instabilities, but it does introduce an error in the particle
encrgy, which we discuss below.

The resulting change in the total energy is given by

0=> U, - {pS,(dU,jdr)—VS (P+Q)—VS, xwy).

We note that the vertex velocities are independent so that the tsrm inside the
brackets must vanish. Since this term is the momentum equation, we are guaran-
teed conservation of energy if we use

pS (AU, /dt) =VS(P+ Q)+ VS, xy (14)

to advance the velocities. This equation is easy to difference, for it requires only that
we differentiate the interpolation function and it avoids the task of constructing dif-
ference equations that satisfy the product rule. This technique originated with Goad
[12], who identified it with the principle of virtual work in mechanics. The
relationship between Goad’s method and the finite element method is discussed by
Lascaux [18].
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c. The Difference Equations

A finite difference approximation to the momentum equation on the grid of
quadrilateral cells (in which each cell is labeled ¢ with volume V, J(x.)= V., and
cell center x. =", x,/4), is derived by integrating Eq. (16) over the domain

M(dU, fdt)= [ dV{V5(P+Q)+VS, xy},

where the substitution of the vertex mass follows from Egs. (5) and (8).
To evaluate the integral, we make certain simplifying assumptions. First, we
assume P is constant within each cell and equal to

P.= P(p(x.), I(x.)).

Second, we replace VS, within each cell by its average value over that cell,
dvc=j' dVVS,/V,, which we call a geometric coefficient. With these
approximations, the dilatation and circulation of the fluid within a cell are com-
puted from linear combinations of the vertex velocities,

(V-U)=Yd,. U,

v

and

(VxU).=>Yd,.xU,.

After integration, there results a sum over the cell indices within the support of S,
and the momentum equation is then written

0=Mv(de/df)—[Z {Pe+Qctdc+d,cx Wcjl Ve

[

The number of terms in the summation is determined by the support of S; the
further S extends, the larger the number of terms.

The geometric coefficients for bilinear interpolation are easily derived by differen-
tiating Eq. (1) above. With bilinear interpolation, there are just four terms in the
summation corresponding to the four cells sharing vertex v. In each cell, there are
eight coefficients in Cartesian or twelve in cylindrical geometry.

The use of averaging over the cells to derive difference equations, while simple
and direct, is not completely satisfactory in all applications. Although specifying the
divergence and curl determines the velocity to within a constant, the difference
approximations to them do not since the approximations and the average velocity
give only three relations among four variables. Consequently, one has the freedom
to construct velocity fields that satisfy the three relations, but correspond to distor-
tions of a kind that lead to the bowtie instability often seen in Lagrangean
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caiculations. Typically, velocities like these develop as a result of cumulative error
rather than instability, and can be suppressed by adding additional dissipation to
the momentum equation [137. In our calculations, the degeneracy is not a problem
because the mesh is regenerated externally [4].

d. Advancing the Equations of Motion in Time

The equations of motion are marched in time, with time step 4r. Each cycle, the
grid variables, p, P, U, I, Q, and w. are initialized from the particle data. The new
time level values of these variables can be calculated from the equations

)
0=Pi{1+2dvc'U$’At‘}—92. (7
C

and

0= 1= 10+ | T UL APt Qo) +doxw) Vet
+ ZMVC(H_%)(U\l'_U?)z]'(”A{w {25}

where M is that portion of the vertex mass contributed by particles in cell ¢, and
UY=0U!+ (1 —6)U°, with L <8< 1. When P_= P? the equations are explicit and
the time step must satisfy the Courant condition. When P = P?, the equations are
semi-implicit and are usually solved assuming dP/dp = const. so that U! may be
eliminated between the continuity and momentum equations to give a single,
second-order equation for the pressure. The imphcit form of the equations is very
useful when there are voids in the domain. When there are voids, and with any
interpolation other than NGP, the vertex mass may go to zero more rapidly than
the pressure, resulting in very large values of the temperature and the sound speed.
When such singularities in the sound speed occur, the implicit equations assume the
appropriate form for incompressible flow and the computed acceleration remains in
scale automatically {17].

When §>1, the equations are dissipative; the dissipation is guadratic in the
acceleration and proportional to {#—1). The last term, which adds the dissipated
energy back into the internal energy to give overall energy conservation, is derived
by projecting (U! + U°%)2=U" — (§ — 1)(U' — U°) onto the momentum equation 0
calculate the change in the kinetic energy.

We remark that we have assumed in deriving these equations that the con-
tribution of the “kinetic™ pressure, which is equal to

=13 my(u, — Ulx,))u, —Ulx,)) S,

p
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is small and can be neglected. There is evidence from numerical experiments that
the kinetic pressure is small except in shear layers or other strongly accelerated
flow, where it is observed to be 10% of the total pressure.

Boundary conditions are applied to the equations in the usual way. For example,
no-slip or free-slip conditions are applied directly to U® by setting U°=0 or
U?-7i=0, respectively.

¢. The Particle Dynamics

To transfer the results of the solution of the equations of motion from the grid to
the particles, we interpolate the accelerations onto the particles,

ul=ul+Y (UL —UY) S, (20)

and advance the particle positions,
— 0 [
x}=x)+U%x,) 4t. (21)

Note that the boundary conditions do not appear explicitly in these equations.
Rather, they are felt through changes in the fiuid velocity at the boundary points.
For example. at a no-slip wall, U° and U! may both differ from zero but U? will
satisfy the boundary conditions. As a particle approaches the boundary, its velocity
will approach zero as well.

To advance the particle energy and conserve energy, we must normalize changes
in the energy of each particle so that the sum of the fractional parts projected onto
each particle sum to the whole of the change in the energy on the grid. Within the
constraint of having to conserve energy, we are free to normalize in various ways.
We choose to normalize changes in the internal energy due to PdV work by the cell
internal energy and those due to viscosity by the cell mass. We reason that PdV
work ought to change the particle energy according to its contribution to the
pressure, but that viscous heating should heat hot and cold particles equally. The
change in particle energy is given by

et=ep {1- L PV U 2t

- mp {Z (QC(V UG)_‘VE (VX Ue)) spc At/pc}

C

+m, Yy (U =U% s5,,0-3)

+m, {Z (U1 — (U%)?) 54y — ()" — (ugf)} / 2 (22)

The first term in the particle energy equation is the PdV work, the second the
viscous heating, the third a correction for the dissipation introduced by the
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backwards Euler differencing, and the fourth for an interpolation error described
below.

When the accelerations are transferred to the particies, the change in the kinetic
energy of the particles is not equal to the change in the kinetic energy calculated on
the grid. The grid energy is linear in the interpolation function while the particle
energy is quadratic.

If the error is absorbed by the internal energy, total energy is conserved. The
result is generally satisfactory because the error is small and the correction positive
definite.

Consider the difference between the kinetic energy of the grid and that of the var-
ticles. This difference. or error in the kinetic energy transfer, is

02 . N,
&= 4%{2M‘,c((Ui)Z_(Ugy)—Zmp((_u;‘) ; ‘;?

P

This equation can be written in the quadratic form

= —= Z AU, - TP, AU, {23
Py’
where
AU, =U! - U°

and the elements of the transfer matrix are given by

TV, =550u =SS
The transfer matrix is symmetric and diagonally dominant since >, 74 =0. Thus,
by a theorem proved by Gershgorin [14], the eigenvalues of the matrix are real
and positive and the error in the kinetic energy transfer for each particle can be
written
g, = —y A AU, - 4U, <0,

v
1

where A7 are the eigenvalues of the matrix. {For nearest-grid-point interpolation,
; ix_and the eisenvalueg are zero and the enerev error

s _z7ero

ToTox R S e e s S ey XITE  IAECW L P A CX EL TEEW e E I OK  IEKE TEE LT T
5

energy transfer is negative definite particle by particle, the correction in the internal

energy is positive, and the overall scheme is dissipative and energy conservative.
We repeat the analysis for the algorithms which include a drag term such as

those described by McCrory er al. [6] and LeBoeuf e al. {77 In their algorithms.

Eq. (20} is replaced by

ul =ud(l —v) +Z (Ul—=(1—-v)UNH S, 0O<v<L 20

P
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When v=0, Egs. (20) and (20') are the same. When v=1, Eq. (20') reduces to,

u' =3 UlS,,

We note that the Krook-type term in Eq. (20') is consistent with momentum con-
servation,

Y, my(UYS,, —ub)=0,
v.p

but not with energy conservation. We can demonstrate this by repeating the steps

leading to Eq. (23) with the result

g=—1 Y AU, T2.(4U, +2vU0). (237)

p,v,v'

The error in Eq. (23') is no longer in quadratic form. Thus, except for NGP inter-
polation for which the error is zero, the sign of the error is indeterminate. The error
is also O(dt) rather than O(4r?) as in Eq. (23), and therefore the total error in a
given calculation will not decrease with the time step. For these reasons, it appears
that algorithms using drag terms to reduce multistreaming cannot be extended suc-
cessfully to bilinear interpolation.

f. Convection

At the end of the Lagrangean phase of the calculation we regenerate the grid,
either to restore it to its original configuration or to adapt to the solution of the
dynamical equations. The particles remain stationary, but we must relocate them
on the displaced grid.

The relocation problem may be stated quite simply. Our information about the
location of the particle relative to the grid is inaccurate as soon as the grid is
moved, because the information is local. Thus, we must develop an algorithm to
relocate a point x, within a cell on a mesh of quadrilaterals. When the mesh is rec-
tilinear, as it is in most PIC methods, the problem is so easily solved as to be no
problem at all. When the mesh is nonrectilinear, some sort of search is necessary
because the geometry changes from cell to cell.

Where the natural coordinates are defined by Eq. (1), x,, is in a cell with index
(¢, j) iff

iI<ESi+1, j<p<j+ L (24)

When x,, is in another cell, other values of (¢, #) are obtained from the transfor-
mation. Usually, these are approximately correct for a neighboring cell so that a
systematic search with intermediate solutions giving the next indices to test will suc-
ceed in a number of steps approximately equal to ((&—£°)* + (n —2°)?)'", where
&% %) is the initial guess.
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In a normal fluid flow calculation, the relative motion between the grid and the
particles is limited. Time step constraints imposed by the algorithm for the
dynamical equations limit the particle displacement to one cell width per time step
and the regeneration of the grid from one time step to the next will usually result in
a new grid that is very much like the old one. Under these conditions, we may
expect many particles to remain in their original cell each time step, and most of the
rest to move only one cell away. Therefore, the natural coordinates from the
previous cycle are a good starting point for a search, and the algorithm should suc-
ceed after one iteration for almost all the particles. This makes the search very
efficient. Of course, the algorithm must cope with exceptional cases as well because
we do not want to limit the time step by particle motion if it should be useful to
move the mesh more aggressively.

Even when it is known that x, is not in cell {7, j), Eq. {1) can be solved for
(' n') as follows: Define ¢"=¢ —1 4" =n"—1, and rewrite Eq. (1) as a Taylor
series expansion about the cell center,

o

wn 1"
xpﬁxczxr:S +Xr,'” +xing .

€

"

where x, = 0x/0<, x, = 0x/0, Xz, = 0x/0¢ o, and x. =Y . x,/4. The derivatives ar
easily evaluated by differentiating Eq. (1). Solving the component equations for ¢
yields the quadratic equation

g =(—b+. /(b —4dac))2a, (25

where

d=XeYem— Ve¥Xe

ino
b= XeVp— Xy Vet xin()”p — Ve —Vfrt(xp — Xl

c=x,(yo— ¥e)— yolx,—xch

in choosing the sign, we assume that the cells are only moderately skew, sc that
dac > b?, and convex, so that b > 0.

When the particles change cells, new values of (7, j} can be calculated from the
natural coordinates. Substituting these into Eq. (1} will not satisfy the equations,
but the indices can be corrected so that a recalculation of the natural coordinates
will reproduce x, and complete the search.

In exceptional cases, as when the discriminant is negative so that the transform is
complex, or when b is negative so that the extrapolaied mapping is no longer con-
vex, the transform misleads the search. For example, when the grid is very skew, the
values of the natural coordinates can become complex even though all the cells are
convex. When the particles are displaced from their original cell, extrapolating the
mapping beyond a cell is not an accurate approximation when the geomeiry
changes radically from one cell to the next. In such cases, a geometric test sup-
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plements the coordinate transformation and directs the search, which then shifts
one cell at a time.

It is convenient to store the natural coordinates of the particles, since they are
used often each computation cycle in the interpolation between grid and particles.
The physical coordinates are easily calculated from Eq. (1).

We have also found a linked list data structure to be useful [197]. We update the
linked lists as particles move from cell to cell, and generate short cell-ordered lists
when vectorization is sufficiently rewarding to warrant the cost. For example, there
is a significant number of computations to be done in the solution of the dynamical
equations, all of which can be vectorized on the Cray computer. For this portion of
the calculation, short lists pay for the cost of creating and maintaining them.

g. Review of the Computation Cycle

In this section, we review the computational algorithm by listing the steps in a
computation cycle in sequence. Beginning with the projection of particle attributes
onto the grid, the sequence of steps is:

i.  We project the particle data onto the grid by interpolation,

pczz My Spe/ Ve, {35)

p
M,=) m,s,,. (8)

p
U,=> myu,s,/M,, (6)

p

and

Iczzepspc/pch' (7)

p

ii. We solve the Lagrangean equations of motion, first Eq. (18) for UY,

second Eq. (17) for pl, (but only if the equations are implicit),

0=pé{1+2dvc'U€At}—p2; (17)

and finally we advance U, fully,

Ul = (U7 (1—0) UO)/e.

It is not necessary to solve Eq. (19) for I'.
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iii. We solve the particle equations of motion

u;=ug+z (UL-U9) S, 120}
xé:xgq—UO(xp)Ar, i1y

5 ) n
é:eg{I—ZPC(V-U")CSPCAI/;)CIS? (22)

- my {Z (QV-U") — - (VXUQ)FSPCAI/,QC)}
+ iy Y (U= U 5,0 = 1)

T U= V) s\p—<<u;)2—<u§ﬁ}f’z.

i
(Y

iv. We regenerate the grid and solve for new particle natural coordinates

My

—4ac))/2a, 125

"=(—b+ (b

L

where

(!':ng;'ﬂ_ VX

Joorrens
b=x:p,~X, Vet Xe( 1y = 3ed— Fedx, — Xoi,

c=xX 1y Vo) — y(x, —xc)

v. [If linked lists are used. they are updated at this time.

2. NUMERICAL EXAMPLES

The properties of the adaptive PIC algorithm are illustrated in two numerical
examples: flow over a step and the interaction of a shock wave with a thin foil.
Using these examples, we examine the accuracy of PIC compared with finite dif-
ference methods. We also illustrate the properties of alternative PIC formulztions,

and explain the use of adaptive zoning in problems with shocks or contact discon-
tnuities.

a. Flow over a Step

We consider confined flow over a step on the domain shown in Fig. 3. A similar
problem has been studied by Woodward and Colella [15] In the step flow
problem, Mach 3 flow enters a duct with smooth, plane-parallel walls a distance £

apart. In the duct, there is placed a step with a rough surface 0.6L in frem the

IR 6320
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orifice. The height of the step is 0.2L. The domain of the calculation extends 3L
from orifice to outflow, where continuative boundary conditions are imposed.

i. Accuracy: Comparison with Finite Difference Methods. We evaluate the
accuracy of FLIP by comparing results for supersonic flow with particles to those
obtained using finite difference methods. The results of many different methods are
available from previous studies [15, 16], and comparisons allow us to place PIC
accurately within the hierarchy of methods available.

We will first attempt to classify FLIP according to some standard scheme.
Woodward and Colella [15] classify the various methods for treating problems
with shocks into three categories. The categories, listed in order of increasing
accuracy, are artificial viscosity, linear hybridization, and Godunov’s method.
According to our prev1ous descr1pt10n the PIC method 1s an artificial viscosity

viscosity in the Lagrangean phase obtains improvements in accuracy by using a
linear hybrid of first and second order schemes to calculate convection, and by
comparison BBC is nearer in accuracy to linear hybrid schemes than to more stan-
dard, single phase artificial viscosity methods [15]. Thus the way convection is
calculated should determine the classification of the method.

We compare FLIP results with a code developed by Saltzman [16]. His code
uses flux-corrected transport to calculate convection in the Eulerian phase of a
Lagrangean-Eulerian code. Since the Lagrangean phase of his code uses the same

TTLLTLe
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FiG. 3. In (a), the body-fitted grid with 20 x 60 zones used in the finite difference calculations is plot-
ted. Mach 3 flow enters at the top and exits at the bottom. In (b), (c), and (d) are plotted the uniform
grid used in FLIP, the velocity vectors corresponding to the initial flow (which enters from the bottom).
and the particles (with asterisks denoting the fixed particles which define the step).
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difference equations as used in FLIP, the major differences in the results are dus to
our using particles to represent the fluid.

There is also a minor difference in the meshes used 1n the two calculations, as
shown in Fig. 3. The mesh for the FLIP calculation has a rectangular bouandary
that includes the step. The mesh for Saltzman’s calculations uses bedy-fitted coor-
dinates that exclude the step. Because of the small zones at the corner of the step in
the body-fitted mesh, Saltzman’s calculations require five times as many time sfeps
as does FLIP, even though the stability conditions are similar.

Initially, the flow velocity is constant everywhere. However, as time progresses g
sow shock and a sequence of reflected shocks form within the duct. What makes
the problem difficult to do is that each reflected shock is weaker than the last, and
numerical dissipation or lack of resolution will eventually dominate. Because of the
no-slip boundary conditions on the step in our calculations, a boundary layer forms
there and partially obstructs the flow after several transit times.

The development of the flow in time as calculated with Saltzman’s code is
Hlustrated in Fig. 4. where a sequence of pressure contour plots are shown at inter-
vais of one transit time, L,/ |u|. These results will be the standard for comparison.
The mesh for this calculation is divided into 26 x 60 zones.

In comparing the PIC results with those shown in Fig. 4, we first test the effect of
the number of particles per cell. The results are iflustrated in Fig. 5, where the
pressure contours after three transit times are shown for calculations with 4, 3, 14,
and 25 particles per cell. With 4 particles per cell. there is so much “noise” due io
the granularity of the representation that the shock structure is difficult to identify.
With 9-25 particles per cell, the results are more nearly compareble to the finite dif-
ference results. At least, all of the reflected shocks can be identified, and they sre iz

a c

F1G. 4. The results of the finite difference calculation for Mach 3 flow over 2 step are illustrated by
pressure contours al =1, 2, 3, and 4 transit times in {a—d).
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FIG. 5. Pressure contours from FLIP calculations of Mach 3 flow over a step are plotted at =3
(transit times) with 4, 9, 16, and 25 particles per cell in (a), (b), (c), and (d). respectively.

the correct locations. With as few as 9 particles per cell the major features of the
flow appear to be resolved. In Fig. 6, a sequence of pressure contours is shown for
the calculation with 25 particles per cell. With 16-25 particles per cell, the particle
contribution to the error is comparable to that from the grid, and further increases
in the number of particles result in only small, additional increases in accuracy.
From these calculations, we conclude that the particle code can do similar
problems as can be done with a finite difference code. The accuracy is less than with
finite difference methods. The decrease in accuracy (or, equivalently, the increase in

FiG. 6. Pressure contours from a FLIP calculation with 25 particles per cell are plotted at times
corresponding to those in Fig. 4.
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effort required for comparable accuracy) means thai when efficiency is an issue,
FLIiP should be reserved for problems that are very difficuli to do otherwise, such
as the shock-foil interaction problem discussed below.

. Accuracy: Comparison with Alternative P1C Formulations. As we have dis-
cussed earlier, there are several differences between our PIC formulation and that ¢
McCrory er al. [6] and LeBoeul et al. [7]. One difference is their use of a drag
term to reduce multistreaming, and the other is the use of NGP interpolation by
LeBoeuf er al. [77 to calculate the density, internal energy, and velocity on the grid.
We use computational examples to test the effect of these differences in two.
separate experiments.

First, let us consider NGP interpolation. When NGP interpolation rather than
bilinear Interpolation is used, the thermodynamic variables change discontinucusly
when a particle moves from one cell to another. This is similar to the original PIC.
where mass weighted fractions of the donor cell energy and momentum are carried
by particles to the acceptor cell. One might expect large {luctuations to deveio
driven by fluctuations in the pressure. However, Harlow argues that cell ¢ ssmg:.
themselves are dissipative and introduce an “effective '1scosity’ which increases as
the number of particles moving from one cell to another in a time step {11 Cor-
versely, particie “ringing” in stagnated flow, which is often observed in PIC
calculations, is due to the absence of dissipation.

If this argument is applicable, we ought to see much less “ringing” in FLIP at al
flow speeds even though cell crossings in FLIP are not dissipative because bilingar
interpolation reduces the fluctuations that drive ringing. In Figs. 7b and d there s
very little evidence of ringing with bilinear interpolation at Mach 3 or at Mach §

e S

a b c d

Fic. 7. Particies are plotted at ¢ =3 transit times for Mach 3 and Mach ! flow with nearesi-grid-
point interpolaticn in (a) and (¢), and for Mach 3 and Mach 1 flow with bilinear interpolation in {5}
and (d). Note the particle ringing in {c).
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There is little evidence of any deviation from an orderly particle distribution, except
in the boundary layer where one should see it. On the other hand, if we replace the
bilinear interpolation defining the density and energy by NGP interpolation, the
results, also shown in Fig. 7, indicate a strong particle ringing at Mach [ (Fig. 7c)
but not at Mach 3 (Fig. 7a). As time progresses, the “ringing” increases in
amplitude, but not exponentially.

From these and other results not shown, we conclude that bilinear interpolation
is better to use for flows where the thermodynamic pressure is significant compared
with the kinetic pressure. In our example, NGP gives results with some ringing for
transonic flows, and even stronger ringing for low speed flows. Even bilinear inter-
polation gives results with ringing as the Mach number is decreased further.
However, with implicit differencing in time and bilinear interpolation the ringing is
suppressed at all Mach numbers.

Next, we replace Eq. (20) by Eq. (20') and repeat the Mach 3 flow with 16 par-
ticles per cell and v=0.1. (This increases the similarity of FLIP to the method
described by McCrory et al. [6].) Because we are requiring energy conservation, a
larger value of v results in an instability when the correction to the particle internal
energy is negative. The results of the calculations are shown in Fig. 8 after three
transit times. Compared with the contours in Fig. 6, the ones in Fig. 8 do not show
clearly the second reflected shock, much less the third. We conclude that a Krook-
type drag term when used with bilinear interpolation to reduce multistreaming will
cause a significant loss of accuracy.

As we noted earlier, when NGP interpolation is used Krook-type drag is not dis-
sipative. However, the “ringing” we observe with NGP is a more apparent problem

a b c

FiG. 8. The pressure contours for a calculation of Mach 3 flow over a step with a Krook-type drag
term to reduce multistreaming are plotted. Compared with the results shown in Fig. 6 without drag, the
solution with additional dissipation has much less structure.
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than multistreaming. It seems also to be present in the resulis of LeBoeuf e7 ¢l {77
in their calculation of the Kelvin—Helmholtz instability. In their particle plots, there
are striations and gaps in the particle distribution.

5. Adaptive Zoning

We now consider the use of adaptive zoning with particles. By comparing the
results in a calculation of flow over a step with those for shock interaction with a
thin foil. we show that adaptive PIC is most useful in those problems for which the
particle representation is most applicable. There, its use enables one to employ very
crude meshes, yet still capture the essential features of the fiow.

First, we show the results of an adaptively zoned calculation of flow over a step
it Figs. 9 and 10 with 20 x 60 zones. The adaptive zoning is generated by minimiz-
ing the functional

F=[] de an[ (V& + 9} + [0} ] i26)

as described in Ref. [87. In the calculation shown, the weight function w is given by
w=d’N{VP/P,}". (27

where N, is the number of particles in cell ¢,  is the distance from the corner of the
step, and P, is the inflow pressure. Because the gradients in the pressure are less
meaningful i cells where there are fewer particles, the weight function is made ¢
scale with N.. The factor d prevents very small cells from forming in the stagnation
region and also amplifies the gradients near the outflow boundary where the shocks
are weaker.
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Fi6 9. An adapted grid for Mach 3 flow over a step is plotied. The grid is adapied to resoive
gradients in the pressure.
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c

FiG. 10. The pressure contours for a calculation on an adaptive grid are plotted at times
corresponding to those in Fig. 4.

The refinements in the grid spacing, shown in Fig. 9, are correlated with the
pressure gradients, which can be deduced from the pressure contours shown in
Fig. 10. The results of the adaptively zoned calculation are somewhat improved
over those in Fig. 6, although the pressures have been smoothed so that fluc-
tuations do not drive the adaptive grid. The improvement obtained with adaptive
zoning is not as dramatic as that reported by Saltzman [16]. To obtain that kind
of improvement, one must make the volume weighting term more dominant in

c d

FiG. 11. The 50 x 100 grid for a calculation of the interaction of a shock with a thin foil is plotted at
£=10, 20, 30, and 35 problem time units in (a—d). The right, top, and left boundaries are free slip, rigid
walls, and the bottom boundary is a prescribed inflow boundary. The passage of the shock along the foil
causes a progressive refinement of the zones.
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Eq. (26). However, with a particle code, the smallest zone must contain at least one
particle and this places an upper limit on the adaptivity of the mesh. For example.
with 9 particles per average cell, the linear dimensions of the smallest zone can be
no smaller than one-third the average value.

We next consider an obliquely incident, plane shock which is driven into a thin
foil. Initially, the foil density is 200 and the fill gas density is 0.1 in problem units.
The shock is amplified by reflection from a rigid wall, and interacts a second nme
with the foil and compresses it.

A very fine resolution, adaptive grid with 50 x 100 zones is shown in Fig. 11 at
r=10, 20, 30. and 35 units of problem time. The results obtained with this grid at
the cost of an hour of computing time will be our reference for comparison. The
lefr. top. and right boundaries are rigid walls: on the bottom boundary, fuid iz
injected at supersonic speed. Initially, the domain is fillad with cold gas at low den-
sity.

The inflow of cold gas with density 0.4 in probiem units ar the bottom boundary
drives a plane shock upward. It begins to interact with the foil, first crushing rthe
*hin end of the wedge and driving it upward. As the shock begins to interact. the
mesh adapts to the pressure gradients as prescribed by Eq. {27). Since there are
many more-particles in the foil than in the fill gas. as shown in Fig. 13, the zones
tend to be more concentrated in the foil than in the fill gas for equal values of the
pressure gradient scale length. In the grids depicted in Figs. 1ia and b, the passage
of the shock is remarked by the grid; its response to the changing pressure gradients
is localized In Fig. 11d. the zoning reflects the increase in the compiexity of the
solution in the interior of the foil.

In Fig. 2. density contours trace the history of the foil. The passage of the shock
over the foil compresses and acceierates the foil upward beginning at the zpex of

b c d

FiG. 12, The density contours at times corresponding to those in Fig. 11 zre plotted Mote the rip-
pling of the foil in (c) and the folding at the top, with separation occurring a« the fold in (d).
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b c d

FiG. 13. The particles for the shock—foil problem are plotted at times corresponding to those in
Fig. 11. Many details of the flow which are not evident in the density plot are visible in this represen-
tation. Note the mixing of foil material from the lower apex with the gas flow, the jetting of foil material
into the cavity along the left boundary in {c) and (d), the large amplitude deformation of the foil surface
in (d), and the multiple shocks due to reflections from the foil and the wall in (b)~(d).

the foil. Note the narrowing of the high density region as the grid is refined, which
occurs because of the decrease in the effective size of the particles. In Fig. 12¢ at
t= 30, a number of new features in the flow are apparent. The apex of the foil has
been pulled away from the left boundary. Above the apex, the foil is rippled at
regular intervals, and, near the top boundary, the foil is folded under. In the grid at
the corresponding time, shown in Fig. 11c¢, one can see concentrations of the zones
at the ripples, indicating relatively stronger pressure gradients at these points. In
Fig. 12d, the ripples have become nodules, and the section of the foil above the fold
has separated.

The rippling of the foil is the most significant feature of the calculations, as is
evident from the particle plots in Fig. 13. In the plots, the foil is represented by
asterisks, and the fill gas by dots. The rippling can be explained by an apparent
Kelvin—Helmholtz instability driven by shear flow at the surface of the foil. The
subsequent amplification of the ripples is due, evidently, to a Rayleigh-Taylor
instability driven by the reflected, secondary shock.

With adaptive zoning, some of the more important features of this calculation
can be reproduced by calculations on a much cruder grid even when they are lost
on a Eulerian grid with the same number of zones. On a Eulerian grid with
15 x 30 zones, the instability disappears as shown in Fig. 14. With an adaptive grid
using the same number of grid points, the instability is evident as shown by the par-
ticle plots in Fig. 15. The adaptive grid for the calculation, shown in Fig. 16, is suc-
cessful in correctly representing the unstable foil dynamics, because the pressure
gradients driving the instability are resolved. This is a very encouraging result,
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a b c d
FiG. 14. In the particle plot for the shock—foil calculation on a Fulerian grid with 15 x 30 zones, no
evidence of a Rayleigh- Taylor instability is visible. The time sequence is the same in Figs. 11-16.

because the adaptive calculation with the smaller number of zones required only
2 3 min of computing time. With this kind of speed, FLIP calculations can be nsed
as an inexpensive diagnostic tool.

Of course, there is more complexity in the flow than is reproduced by the crudely
zoned calculation. Some of this complexity is indicated by the depiction of the flow
on the fine grid by the particle plots in Fig. 13. Cousider first the shock in the fill
gas. In Fig. 13a, the densely packed particles lie below the shock and above the

SERRRRRRE
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Fig. 15, In the particle plot for the shock—foil calculation on an adaptive grid‘ with 15 x 30 zones,
large deformations of the foil by a Rayleigh-Taylor instability and jetting of the foil material as in
Fig. 13 are both visible. However, details of the shocks in the fill gas are not visible.
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FiG. 16. The 15x 30 zone adaptive grid resolves the pressure gradients due to the interaction of the
fill gas with the foil.

contact discontinuity between the initial fill and the injected gas. In Fig. 13b, a
second shock transition is visible at the boundary between flow parallel to the foil
and flow upward. In Fig. 13c, a reflected shock forms at the top boundary, and a
shock also forms above the apex of the foil in the gas trapped between the foil and
the left wall. The reflected shock is clearly responsible for folding the foil. Also
evident in the particle plot is a jet of foil material moving upward from the apex of
the foil into the trapped gas which also can be seen in Fig. 15.

3. CONCLUSIONS

Using the FLIP method, one is able to use adaptive zoning with the particle-in-
cell representation to model complex geometries with many contact discontinuities.
Since particles are easy to initialize and the adaptive zoning is automatic once the
criteria for adapting the mesh have been chosen, FLIP is also easy to use.

It is apparent that FLIP is less accurate than finite difference methods. It is also
somewhat more expensive. With 9 particles per ceil, which seems to be about the
minimum number one should use, a third of the computation time each cycle is
spent pushing particles, or about 20 us per particle per cycle on a Cray. On the
other hand, FLIP is more accurate than alternative formulations using lower order
interpolation or drag terms in the momentum equation.

However, the real value of FLIP is apparent in the shock—{foil calculation where
finite difference methods are not appropriate. The combination of the particle
representation and the adaptive mesh gives the necessary special capabilities of par-
ticles and the accuracy of adaptive zoning. When iaterfaces and discontinuities
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requiring a Lagrangean description are to be modeled, the particle representation is
flexible and powerful. When there are small, embedded features of the flow fc be
resolved in the initial data or captured as they develop in the solution, the adaptive
mesh gives the needed resolution automatically and efficiently in computer time and
storage.

We note again that the separation of the computation cycle into Lagrangean and
Eulerian phases is extremely useful. The separation allows us to choose from among
many standard finite difference methods for the dynamical equations, including the
one we have used in our examples which extends PIC to flow at all speeds using a
time-implicit formulation. We also can extend the formulation to more complicated
phenomena such as magnetohydrodynamic flow.

Some properties of FLIP are poorly understood and further analysis is needea.
For example, the source of “ringing” is incompletely understood, although the com-
bination of bilinear interpolation and implicit differencing ia time seems to suppress
it.
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